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OF STATE OF FLOWING POLYMER MEDIA. 

II. ANALYSIS OF SPECIFIC MODELS 
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It is shown that many present rheological models reduce to the form of the equa- 
tions of a generalized Maxwellian liquid. 

The conditions under which the rheological equations of the relaxational and integral 
type can be reduced to the form of the generalized Maxwellian liquid with a symmetrical B 3 
tensor were established in [I]. In this paper, it is shown that these conditions are satis- 
fied for many rheological equations, formulated in the literature. We are not attempting to 
cover all of the papers concerned with a development of rheological equations, but we shall 
limit ourselves to a number of modern models, illustrating the different dependences of the 
quantities ~,~a, Be in (17') and (17") [l] on the deformation parameters. The physical 
hypotheses, adopted in constructing the models, will be reflected in the nature of the ex- 
pressions for xa, ~, B~ . Many rheological equations are constructed by generalizing the one- 
dimensional mechanical models, consisting of "springs" and "pistons" [2-5], to a three- 
dimensional form, invariant relative to the coordinate system used. The rheological equations, 
based on the mechanical Maxwell models, in general form are written as follows [2]: 

where the linear operator Fab c [2], constructed by starting from the Bight-constant Oldroid 
model, is the most general derivative of the symmetrical tensor FabcT = T + a(TD + DT) + 
bEtr TD + cDtr T. Substituting into Eq. (1) T a = T a + (b/2a)Etr T a and taking into account 
the fact that the stress tensor is determined to within an isotropic quantity, we arrive at 

the equivalent rheological model T~T=, where Ta is determined from equations 17'), (17") 

[l] for: 

(2)  

I n  d e r i v i n g  r e l a t i o n s  (2 , we u s e d  t h e  e x p r e s s i o n  DtrT~ + 1 tr T~ = - -  2 a t r  T~D o b t a i n e d  
Dt %~ 

from (I). As is evident from (2), the parameters b and c enter only in the form of the com- 
bination b + c + 3bc/2a. The particular cases of Eq. (1) are: a Maxwellian liquid with a 

T 
-I(T)) or lower (a = I spectrum of relaxation times from the upper (a = --I, b = c = 0, m~ = F t 

b = c = O, ~ = Ft(T)) convective derivatives, the Johnson--Segalman [6] model with nonaffine 

deformation (a is interpreted as the parameter for slipping of the lattice, b = c = 0), 
Spriggs' model [2-5] (a are integers , h a = h/~ ~, ~ ~ ~/~g(~), g(~) is the Riemann zeta function, 
a = --(I + ~), b = 2/s(l + s), c = 0, the relation b/a = --2/3 is taken so that trT~ = 0). The 

relation between the relaxational and integral equations is established for a Maxwellian 
liquid by Lodge [7], while for the Johnson--Segalman model, the relation is established in [6]. 
It is interesting to note that for (2) the tensor ~ corresponds to the tensor introduced in 

[6]. For a = b = c = 0, Eq. (I) gives a Maxwellian liquid with a Jaumann derivative. Let us 
examine in greater detail the transition a § 0 for b = c = 0 in the integral equation (18) 
from [I]. We shall seek the solution of Eq. (14) [I] in the form ~ = ~o -- amos + O(a2), 
molT= t = E, SIT= t = O. Substituting this expression into (14) [I] gives 
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De~176 W o o ,  D S  - -  - -  = o 0 D ( z )  o) o. ( 3 )  
D~ Dz 

From the second equation in (3) and the initial condition for it at z = t, it follows that 
the tensor S is symmetrical. As shown above (see (22), [I]), t0T-mo = E. For this reason, 

lira I (o~ ( o ~  E)=- 4S(~, ~). Thus, for a Maxwellian liquid with a Jaumann derivative the inte- 
a ~ 0  (Z t 

Z = -- ~ exp S (~, z) d~ �9 Integrating 

this expression by parts, we arrive at the integral relation derived in [5, 8, 9]. The rheo- 
logical equations, based on the mechanical Jeffries model, are written in general form [2-5]: 

The last term in the operator Fab c is absent on the right side of (4), since trD = 0. For 

al = a2 = a, just as in (I), Eq. (4) is reduced to the equivalent model T=2 ~ . 

I 
D~ ~T~, where T a is determined from the system (17), (17") [I] for z~_ , ~%= 

a%~ -+- b~ + c~ + - -~$-  tr TaD q- ---%1-~-- - ~ a /  ( b ~ - -  b~) t rD 2 , [~ = 1, a n d  B l = a D .  

The quantity ~%2~/%1~ is the limiting value of the shear viscosity for "fast" actions, for 

example, y § ~ in stationary and ~ § ~ in oscillating shear flows. For a1~a2, Eq. (4) does 
not reduce to (17'), (17") [I], which is related to the breakdown of the necessary condition 
for the transition. The following models are particular cases of Eq. (4) with al = a2 [4, 5]: 
the three-constant Oldroid (a = --I, bl = b2 = 2/3, c~ = 0) and Williams (a = --I, bl = b2 = 2W, 
c~ = 0). For calculations of flows in which the main rheological factor is the dependence of 
the properties on the deformation, a modification of the equations of a Maxwellian liquid with 
an upper convective derivative and a single relaxation time, obtained by introducing 
empirical equations for the dependence of the viscosity and relaxation time on the deforma- 

I 
tion rate tensor %----FI(IID) , N----F~(IID) [3-5], where liD-- irD 2, is used. This model corre- 

sponds to the differential (17') [I] and integral (19) [I] equations with z= I/Fi, p=--q~= 
--F2/F~, B =--D. Sometimes the condition G = ~/h = const is added; then F2 = GF~. More com- 
plicated models are the integral models (18) and (19) in [I], in which z=, ~= in (18) [I] and 

z~, q% in (19) [I] depend on the deformation rate tensor. In general form, they are written 
as follows: B = I, 2, z~= I/%~.g~=(llD), %==N~J~= (IID)/%~, BI------D , B2=D. In models of the 
type (19) [I], similar equations are used for z~= and ~. For them, Pa depends only on the 

instantaneous value of IID. In most cases, ~ = q~, %~ = %~, g~ = g~, [~ = 1 ~- re, f~ = 

--(s/2)f a. The quantity ~, which depends on lID, is proportional to the ratio of the second and 
first differences of the normal stresses in a stationary shear flow. The models are distin- 
guished only by the choice of e and equations for fa, ga, t]a, ha. In a number of cases, the 
viscosity of the solvent is taken into account and 2~sD is added to the integral relation 
(19) [I]. In recent years, there has been an intense development of the relaxation models 
with characteristics depending on the stress tensor. Usually the dependences are taken as 
functions of the quantity E a = (I/2)trTa, which is interpreted as the elastic energy of the 
Gaussian lattice. Such models require only several adjustable parameters in order to describe 
satisfactorily polymer media both in shear and in elongational flows. In [10], the following 

model is proposed: T : ETc~, T~-[-  %r : 2)~G~D, %o~ Dx~ _ 1--x~--ax~]fE~/Go~, G~ : Go~x~, 
Dt 

Z~----% ~ , ; . o~Xo~ where a is an adjustable parameter n = 1 4; (V) is the upper convective derivative 

[2]. By introducing Pa = --Goaxa, this model reduces to the system (17'), (17") If] with ~ = 

1, BI = --D, q~a = -Pa /Xa ,  •  %==%o~(--p~/Oo~) n . I n  [ 1 1 ] ,  a n  e q u a -  

t i o n  of the Maxwell liquid type with an upper convective derivative and a single relaxation 
time, constructed starting from an examination of the dynamics of a two-centered dumbbell, is 
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modified by introducing the dependences I and ~ as a function of the quantity (tr ~ -- I), 
where the tensor ~ characterizes the stretching of the macromolecules. In this case, the 
shear modulus G is assumed to be constant. The rheological equation Ill] for the excess 
stress tensor T = 3 G~ reduces to Eq. (17') [I] with a = ~ = I, z = I/I, p =--G, B~ = --D, 
I = F(2 E/3 G), where the function F is determined from the experimental data. In [12], the 
equation for the Maxwellian liquid with the upper convective derivative is also modifed by 
taking into account the dependences of I~ and na on Ea; G a is assumed to be constant. This 
model is written in the form (17') [I] with x== I/Ia, ~ = l, B1 =--D, p~ =--G~, I~ = loa exp 
(I/f~ -- I/foe), f~ = fo~ + aE~/G~. Here, f~ is the volume fraction of the free volume; a is 
an adjustable parameter. In [13], this model was developed further. It is assumed that f~ 

relaxes : %~ D~ : bH~ E~ n--7--- ([= -- [0 ), G= = H=A= In %0, H=H(%0=) , where H(1) is the spectral func- 
m D~ 

tion, b is an adjustable parameter, and the discretization of the spectrum is carried out by 
separating it into intervals A~lo. In [14], starting from the kinetic theory of a rearrang- 
ing lattice developed in [15], a model is constructed in which both the dependence of the re- 
laxation time le on the stress tensor (Y(Ta)) and slipping (the parameter ~ depending on II D) 
of the lattice relative to the medium are taken into account. The shear modulus is assumed 
to be constant. This model corresponds to Eqs. (17'), (19) [I] with B = I, B~ = --(| -- ~)D, 
• ~a----G~/(l--~) �9 In this model, the tensor ~ coincides with the tensor in the 

Johnson--Segalman model [6]. Two equations are proposed for the function Y: Y = I+ eEe/Ge, 
Y = exp (r The quantity ~ is found from the relation of the second and first differ- 
ences of the normal stresses with a stationary shear flow, while g is found from data on the 
viscosity with uniaxial stretching. The rheological models examined above correspond to the 
Kaye's type integral equation with parameters depending on the stress tensor. Since for an 
incompressible liquid the stress tensor is determined to within an isotropic term, it is pro- 
posed in [16] that the dependence of rheological parameters on Q~ and Qa, independent of the 

1 (trZ T - -  tr T2), i so t rop ic  term, be given: Q~ = I$--3IIT, Q~ = 2I$--9ITIIT+27IIIT, IT = fiT, I I r=  -~ 

Ill T = det T. Models proposed in [17, 18] also are of the same type. For them in (18) [1], 

B = 1, B~ = --D, z~ : I/%ag~, ~ = ~JJ%~. In [17], the functions g~, f~ depend on the second 

invariant IIT~. It is shown in [18] that the best agreement with experimental data is 

achieved when the dependence of g~, f~ on E is introduced. Up to the present time, a large 
number of papers have been published in which a microscopic approach is used to study the 
dynamics of viscoelastic liquids. In these papers, various modifications of the Kargin-- 
Slonimskii--Rauz model are used, in which the macromolecule is modelled as a collection of 
particles connected by springs and submerged in a Newtonian liquid. Although this approach 
is essentially phenomenological, it leads to many important results. Reviews of investiga- 
tions along microscopic lines are given in [3, 4, 19]. As is well known, these models lead 
to equations of a Maxwellian liquid with an upper covariant derivative, a discrete spectrum 
of relaxation times, and constant coefficients in the equations. This rheological model does 
not give a correct description of a viscoelastic liquid with large deformations, which is 
essentially related to the assumption of linearity of the springs connecting the particles. 
Taking into account the unlimited growth in the rigidity of the springs with total stretching 
of the macromolecules, as follows from a molecular theory, eliminates this shortcoming. The 
nonlinearity of the interaction forces between particles greatly complicates the problem and 
this factor is predominantly analyzed only for two particles: dnmbbells, which leads to a 
single relaxation time. In contrast to most papers investigating the behavior of a dilute 
solution of dumbbells in shear and elongational flows, the approximation of a slow flow, and so 
forth, rheological equations are obtained in [20-23] for such a medium. The approach in [20, 
21] is based on a system of equations for different moments of the distribution function of 

dumbbells with respect to length and direction b. Starting from the reasonable physical hypo- 
thesis that this distribution is close to a delta function, all moments are expressed in 
terms of the quantities <bibj>. As a result, a rheological equation is obtained that is 

valid for an arbitrary flow. Rheological models, obtained in [20-22], can be written as fol- 
1 

= 2~sD + Tp; ~, b, c, andd depend on Ep =-~trT~; (aT%)--b(DTp+TpD)+cT~:dE �9 lows: T' By 
b 

introducing T = Tp + pE, these models reduce to the form (17'), (17") [I], with B=----D, 
a 

d a ,  l d a  1 [  2a'b tr TD 3a'd+ca] ~ : - - ,  -- , z= . For the models in [20, 21] 
a 2 dE~ -2 a + 5' (tr T - -  3p)  k a + a' (tr T - -  3p)  
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= b, 1/a = K(I + 2Ep/A); then z=cK[l+-- trT-- 3P]~-- 3dK--ff ( @ t rT - -3p  ~ _  2 
A ) A 

tr TD. 

In [23], a theological equation is derived by expanding the distribution function of 
dumbbells in a series with respect to the quantity e, characterizing the small nonlinearity 
of the springs. In the first approximation, in s (%, G, s are the dumbbell parameters): T' = 

2~]~D+T~, T ~ = G [ ~ + e ( ~ t r ~ + 2 a Z ) - - E ] ,  a + k ~ + e ( ~ t r ~ + 2 a z ) : = E  . I n t r o d u c i n g  T = G  a +  

(afr ~ -~ 2a ~) ~- -~e (trZ ~--tr~)E] ~- pEj and eliminating the tensor a, we arrive, up to terms3g of 

order  ~ ,  at  the system ( 1 7 ' ) ,  (17") [1] wi th  •  1 - - 7 e +  ( t rT--5p)  g~= 1-I- G 

( f rT--3p)T '  e ~ [ 2 ( t r T Z _ t r a T ) _ 3 p Z _ t _ 2 p t r T + 4 ( t r T t r T D _ t r T ~ D _ p t r T D ) ] l , ,  B = _ D + k  G3e T----G--2e 

(TD + DT -- D tr T + pD). 

As in the case of Zimm's model [3, 4, 19], rheological equations of a dilute solution 
of dumbbellswithnonlinear springs coincide in form with the rheological equations derived 
from the lattice theory. However, this correspondence is formal. A unique approach to con- 
structing a rheological model, based on nonequilibrium thermodynamics, is developed in [24]. 
This model includes an equation that expresses the elastic potential W in terms of the in- 
variants of the deformation tensor C. For the Mooney--Rivlin potential W = ~[I C- 3 + ~(II C -- 
3)], the model in [24] with a single relaxation time is written as (qn = const, det C = I): 

T'=2nD§ C §  e p = q  C--C-~-t - ( I Ic~Ic)E.  , q(C)=qoexp - - - ~ - ( l + ~ ) ~ ( I e - l -  

I Ic--6)  t . By i n t r o d u c i n g  T1 = 2l~C + p~E and T'a = -2c~C -~ + p2E, t h i s  model i s  
7 

reduced to 

, ~ 2 qiPt --__ q(Tt--ptE ) Eqs. (17), (17") [I] with BI=--D-~ ql el 2~ Tt, = - ~ q t ~ t - - - - ,  % = 4qi~ t, qi 
\ , 

2 q2P2 / T~--p2E ] Bo = D - -  q2 T2' ~ 2 = - - 3  - q ~  a~L . " 2a~tt ' % = -- 4q2~, q2 = qt 2 ~  .~ ~l = II(T~-o,E)I2~ -- I(T,--p,E)/L~ , ~ = 

--II(T~--p~E)I2~--I(T~--p~E~I2~ �9 Starting from these rheological equations with the conditions p~/ 

2~ +- -1 ,  p2/2~c~ + 1 for t +-~o, it can be shown that det(Tl--PlE )~ I, ( T2-p2E ) 

Ti--PIE ~ - - E .  The model in [24] with a spectrum of relaxation times reduces to the form 
2~ 

(17'), (17") [I] by transformations similar to the case involving a single relaxation time. 
The analysis carried out above shows that many rheological models can be represented in the 
form of equations of a generalized Maxwellian liquid: differential (17'), (17") [I] or equi- 
valent integral (18), (19) [I]. In addition, only the first several terms of the general 
equations (see [I]) are used for the tensor B, expressing it in terms of the deformation 
rate and stress tensors. In equations for the scalars • and cp, the complete system of invar- 
iants of these tensors is also not used. In the case of a spectrum of relaxation times, each 
relaxation oscillator is described by its own equation, i.e., there is no interaction between 
relaxation oscillators (see .(3), (4), (9) [I]). However, in the literature, there are a 
number of integral models which cannot be represented in the form of equations of the gener- 
alized Maxwellian liquid. This is related to two factors: giving in (18), (19) [I] the de- 
pendences of the quantities ~, ~ on the time t, and using, as a measure of the deformation, 
tensors that do not have the multiplicative property (16) [I]. The first factor occurs in 
the models in [3-5], where the tensors ~01(t, z) = Ft(z ) and ~02(t, r) = F-aT(r) and the func- 

tions • (p~(t, T) are used. In the Bog--White equations [3-5], the quantity ~depends on 
t 

the average value of the second invariant of the deformation rate tensor 1 .I IIDl~d~ (a 

1 i.F(iio) more complicated dependence on d~ is also proposed) and for [25] on IIID(I)-- 
t--~ ~ ' ' 

[Io(~)l I/2 In the rheological Tanner--Simmons equation [2-5], q%(~, ~)=q% if IIct(~)~/(z~-3, and 
q%(t, T)~ 0 if IIct(~)>Kz ~-~3 . The parameter K, determining the limiting deformation of the 
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lattice, is interpreted as its strength. For the model in [3], ~p=(t, T)=~ if z=>S(t), and 
~(t, T)----0 if • The function S(t) depends on the past history of the deformation 
and is related to the critical energy of breakdown of the spectrum. In BKZ type models [2-5], 
to which the Tanner--Simmons equation is also related: ~P=~0=h(Ict(~), IIct(~)). In papers develop- 
ing this line of thought, different equations are used for the function h. An even greater 

t 

1 t ~ f2~ [IID (t), It D (T), IID (~)1 d~. complication is proposed in [26] : ~ = fi~ [lID (t), lID (T), liD (~)], ~ -- t-- �9 . 

2~ 

In a number of papers (see [27]), it is proposed that (p~ = const and other tensors F be used 
as measures of deformation. However, in these papers, only tensors that depend nonlinearly 
on Ct(r) are proposed. In view of the isotropy of such a function, it can be represented in 
the form F = hoe + hiCt(T) + hzC~1(T), where ho, h l, h2 depend~on IC~(T), II C (T). Thus, 

�9 "L . t o 

these models actually reduce to BKZ type models. The conditons under wh.lch the relaxatlonal 
and integral equations are equivalent for an arbitrary flow were established in [I]. However, 
the rheological equations may turn out to be equivalent for certain types of flows. The pos- 
sibility of such a situation must be foreseen in comparing the experimental data with calcu- 
lations on rheological models of different types. Thus, for example, let us examine the mo- 
tion with a commutative history [28]. For this motion, for each time t, there exists a con- 
figuration * such that F,(T) = Q(T)F(T) for all T~ t, where Q(T) is an orthogonal tensor, 
F(TI)F(T2) = F(T2)F(TI). It is proved in [28] that then F(T) = exp[M(T)], where M(TI)M(T2) = 
M(T2)M(TI). For such a flow, Ct(T) = Q(t) exp [M(T) + MT(T) -- M(t) -- MT(t)]QT(t), D(t) = 
Q(t)M(t)QT(t), W(t) = Q(t)QT(t). Using these relations, it is not difficult to show that for 
a commutative stretching flow, when M(t) = diag[g ~(t) , ca (t), s ], the rheological equation of 

f t 

BKZ type T~T~, T~ = j' ~(T)expI--~• is equivalent to (17')and (17") the 

[I] with B~ = aD. (For simple stretching, the analogous result was obtained in [27].) In the 
case of an arbitrary flow, these relaxational and integral equations are equivalent only with 

= _+I. The kinematics of a commutative stretching flow is analyzed in [28]. The basic dis- 
advantage of rheological models, not leading to equations of the generalized Maxwellian 
liquid, is the fact that in the numerical solution of problems of hydrodynamics and heat 
transfer, it is not possible to use the finite difference methods, traditionally used in 
fluid mechanics. Computational methods are required in which the motion of separate liquid 
particles is examined. This significant complication is related to the necessity of calcu- 
lating the integrals along the trajectory of the fluid particles in calculating the stress 
tensor. The possibility of writing many rheological models in the unified form of the equa- 
tions of the generalized Maxwellian liquid shows the promise of further analysis of these 
equations, in particular, taking into account a large number of terms in the expression for 
the tensor B and the functions ~, q0 [I]. A unified form for writing many rheological equa- 
tions also permits developing unified programs for numerical solution for problems in fluid 
mechanics of a viscoelastic fluid. Comparing the results of calculations with experiment, it 
is possible to choose for a given fluid a theological equation, which would describe its be- 
havior with nonstationary flow and complex flow geometry, and not only in simple viscosym- 
metric situations. Carrying out numerical calculations of the same problems in rheodynamics 
and heat transfer using rheological equations of state of different types will also permit 
clarifying the importance of the difference between the hydrodynamic and thermal characteris- 
tics, predicted by different models. Up to the present time, in view of the necessity for 
developing computer programs, practically specially for each rheological equation of state, 
such investigations have not been carried out�9 The numerical calculations of hydrodynamic 
and heat problems, presented in the literature, were carried out for some specific theologi- 
cal model, chosen in a fairly arbitrary manner. 
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